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nates, the six components yield 12 subcomponents de-
noted as Exy , Exz , Eyz , Eyx , Ezx , Ezy , Hxy , Hxz , Hyz ,The perfectly matched layer is a technique of free-space simula-

tion developed for solving unbounded electromagnetic problems Hyx , Hzx , Hzy , and the Maxwell equations are replaced
with the finite-difference time-domain method. Referred to as PML, by 12 equations,
this technique has been described in a previous paper for two-
dimensional problems. The present paper is devoted to the three-
dimensional case. The theory of the perfectly matched layer is gener- «
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(1.a)
alized to three dimensions and some numerical experiments are
shown to illustrate the efficiency of this new method of free-space
simulation. Q 1996 Academic Press, Inc.
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1. INTRODUCTION
«
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(1.c)
The perfectly matched layer [1] is a new technique of

free-space simulation developed for solving unbounded
«
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1 sx Eyx 5 2

(Hzx 1 Hzy)
x

(1.d)problems with the finite-difference time-domain method
[2, 3]. Referred to as PML, this technique is based on the
use of a layer especially designed to absorb the electromag-
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(1.e)netic waves without reflection from the vacuum–layer in-
terfaces. In [1] the layer and the free-space simulation
technique were presented for two-dimensional problems. «
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The present paper is devoted to the three-dimensional
case.

The first part of the paper generalizes to three dimen- e
Hxy
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(Ezx 1 Ezy)
y

(1.g)
sions the theory of the PML medium [1]. It is shown
that the theoretical properties of the 2D medium are
preserved with the 3D one. The PML medium is then e

Hxz
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z

(1.h)
applied to build an absorbing layer to simulate free space
on the outer boundary of a 3D computational domain.

e
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t
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z

(1.i)The second part of the paper is devoted to numerical
experiments. Comparisons with two previously used tech-
niques of free-space simulation are provided. These ex-
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(1.j)periments show that the 3D PML method is very efficient
and allows the absorption of the electromagnetic waves
to be widely improved.
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(1.k)
2. THEORY OF THE 3D PERFECTLY

MATCHED LAYER
e

Hzy

t
1 s*y Hzy 5

(Exy 1 Exz)
y

, (1.l)
2.1. Definition of the PML Medium

In the PML medium, each component of the electro- where the parameters (sx , sy , sz , s*x , s*y , s*z ) are homoge-
neous to electric and magnetic conductivities.magnetic field is split into two parts. In cartesian coordi-
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«Sy Exy0 5 2bH0 cos whz (3.a)

«Sz(E0 cos wex 2 Exy0) 5 cH0 cos why (3.b)

? ? ? ? ? ?

eS*x Hzx0 5 aE0 cos wey (3.k)

eS*y (H0 cos whz 2 Hzx0) 5 2bE0 cos wex , (3.l)

where

Su 5 1 2 i
su

«g
, S*u 5 1 2 i

s*u
eg

(u 5 x, y, z). (4)

Inserting Exy0 from (3.a) into (3.b), ..., and Hzx0 from (3.k)
into (3.l), we obtain a system of six equations in which Z
is the ratio E0/H0:

FIG. 1. Propagation of a plane wave in a PML medium.

«Z cos wex 5
c
Sz

cos why 2
b
Sy

cos whz (5.a)

If both sx 5 sy 5 sz and s*x 5 s*y 5 s*z 5 0 we can note «Z cos wey 5
a
Sx

cos whz 2
c
Sz

cos whx (5.b)
that (1) yields the Maxwell equations. Thus, the absorb-
ing medium defined by (1) holds as particular cases all
the usual media (vacuum, conductive media). In the 2D «Z cos wez 5

b
Sy

cos whx 2
a
Sx

cos why (5.c)
cases [1], due to the symmetry of the problem, (1)
reduces to a set of four equations. Only one component

e
1
Z

cos whx 5 2
c

S*z
cos wey 1

b
S*y

cos wez (5.d)is split into two subcomponents, either the magnetic
component in the TE case or the electric component in
the TM case.

e
1
Z

cos why 5 2
a
S*x

cos wez 1
c

S*z
cos wex (5.e)

2.2. Propagation of a Plane Wave in a PML Medium e
1
Z

cos whz 5 2
b

S*y
cos wex 1

a
S*x

cos wey . (5.f )
Let us consider a propagating plane wave whose electric

and magnetic fields form the angles wex , wey , wez and whx ,
From (5), it is easy to show thatwhy , whz with the coordinate axis (Fig. 1). Let E0 , H0 be

their magnitudes and let Exy0 , Exz0 , Eyz0 , ..., Hzx0 , Hzy0 be
cos wex cos whx 1 cos wey cos why 1 cos wez cos whz 5 0 (6)the magnitudes of the 12 subcomponents. If this wave

propagates in the PML medium, the 12 subcomponents
can be written as a

Sx
cos wex 1

b
Sy

cos wey 1
c
Sz

cos wez 5 0 (7.a)

Exy 5 Exy0 e ig(t2ax2by2cz) (2.a) a
S*x

cos whx 1
b

S*y
cos why 1

c
S*z

cos whz 5 0 (7.b)

Exz 5 Exz0 e ig(t2ax2by2cz) (2.b)
a2

Sx S*x
1

b2

Sy S*y
1

c2

Sz S*z
5 «e (7.c)? ? ? ? ? ?

Hzx 5 Hzx0 e ig(t2ax2by2cz) (2.k)

Equation (6) means that the electric and magnetic fieldsHzy 5 Hzy0 e ig(t2ax2by2cz). (2.l)
are perpendicular in a PML medium. From (2) we can
write a 5 kx/g, b 5 ky/g, and c 5 kz/g, so that (7.c) is the
dispersion relation of the PML equations (1), connecting gInserting (2) into (1) yields the 12 equations
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to the wave numbers kx , ky , kz . As expected, if sx 5 sy 5 propagating wave (2) is of the following form, in which
c 5 (« e)21/2:sz and s*x 5 s*y 5 s*z 5 0 this equation reduces to the

dispersion relation of the Maxwell equations. Multiplying
then (5.b) by cos whz Sz/S*z and (5.c) by cos why Sy/S*y , C 5

C0 eig(t2(x coshx1y coshy1z coshz)/c) e2(sxcoshx/«c) x e2(sycoshy/«c) y e2(szcoshz/«c) z.subtracting the resulting equations, and taking into account
(7.b), one can show that (13)

Thus, if the conductivities satisfy the matching imped-
ance condition, the phase propagates perpendicularly to
the (E, H) plane, as in a vacuum, and the magnitudea 5 «Sx

Sz

S*z
cos wey cos whz 2

Sy

S*y
cos wez cos why

Sx

S*x
cos2 whx 1

Sy

S*y
cos2 why 1

Sz

S*z
cos2 whz

Z. (8)
of the wave is governed by the last three exponential
terms. This formula is analogous to that of the two-
dimensional case [1]. The coordinates x, y, z are embed-
ded in separate absorbing terms, allowing the wave toSimilar formulas can be obtained for b and c from (5),
be damped along one or two directions by selecting anor from (8) by circular permutations of the coordinates.
adequate set of conductivities. If sy 5 sz 5 0 a waveInserting then a and b into (5.f) and taking into account
propagating perpendicularly to the x axis is not absorbed,(6), the impedance Z is
as when sy 5 0 in the 2D case. We can note that the
3D theory includes the 2D theory [1] as a special case.Z 5 Ïe/« (1/G), (9)
For instance, in the TE case: considering the angle w
defined in [1] we have wex 5 w 1 f/2, wey 5 w, whz 5where
0, wez 5 whx 5 why 5 f/2, so that (10) and (12) give
the corresponding equations of [1].

G 5 !wywz cos2 wex 1 wz wx cos2 wey 1 wx wy cos2 wez

wx cos2 whx 1 wy cos2 why 1 wz cos2 whz

2.3. Transmission of a Wave through
(10)

PML–PML Interfaces
and

We will consider two PML media separated by an inter-
face perpendicular to the x axis (Fig. 2). In each media,

wu 5
Su

S*u
5

1 2 isu/«g
1 2 is*u /eg

(u 5 x, y, z). (11) let us denote by (ue , fe) and (uh , fh) the angles that the
electric and magnetic fields form with the (y, z) plane and
the y axis (Fig. 2). The angles wex , ..., whz defined in the

From (8), (9), and (11), we have previous section are related to the new angles by the fol-
lowing relations which are valid for both the electric and
magnetic fields (u 5 e or h):

a 5
Ï«e

G
Sx

wz cos wey cos whz 2 wy cos wez cos why

wx cos2 whx 1 wy cos2 why 1 wz cos2 whz
(12.a)

cos wux 5 2sin uu (14.a)

b 5
Ï«e

G
Sy

wx cos wez cos whx 2 wz cos wex cos whz

wx cos2 whx 1 wy cos2 why 1 wz cos2 whz
(12.b)

cos wuy 5 cos uu cos fu (14.b)

cos wuz 5 cos uu sin fu . (14.c)
c 5

Ï«e
G

Sz
wy cos wex cos why 2 wx cos wey cos whx

wx cos2 whx 1 wy cos2 why 1 wz cos2 whz
. (12.c)

Inserting (14) into (10) and (12) yields a, b, c, G as func-
tions of ue , fe , uh , fh . We now consider the transmission ofIf the couples of conductivities (sx , s*x ), (sy , s*y ), (sz ,
two polarizations of an incident wave: first, the transverses*z ), satisfy the usual matching impedance condition
electric polarization; second, the transverse magnetic po-(s/« 5 s*/e), we have wx 5 wy 5 wz 5 1 so that G 5 1.
larization.Then, the impedance Z equals that of a medium («, e).

In this case, denoting by hx , hy , hz the angles that the

Transverse Electric Case TE
perpendicular to the (E, H) plane forms with the coordi-
nate axis, in (12) the numerators in the ratios equal
respectively cos hx , cos hy , cos hz , and the denominators In this case, the magnetic field lies in a plane parallel to

the interface. We have uh 5 0, fh 5 fe1f/2, since electricequal one. As a result, from (2), (4), and (12), in such
a matched PML medium, any subcomponent of the and magnetic fields are perpendicular from (6), and ue 5
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FIG. 2. Interface lying between two PML media.

u where u is the angle that the normal to the (E, H) plane S*y1

S*z1
tan fh1 5

S*y2

S*z2
tan fh2 . (18)forms with the normal to the interface. Inserting (14) into

(10) and (12) yields

This relation shows that sin fh1 5 sin fh2 and cos f h1 5
cos fh2 in the following two cases:b 5

Ï«e
G

Sy
wz sin u sin fh

wy cos2 fh 1 wz sin2 fh
(15.a)

—s*y1 5 s*z1 and s*y2 5 s*z2 . If, moreover, sy1 5 sz1 and
sy2 5 sz2 , this case is two-dimensional. By rotating the (y,c 5 2

Ï«e
G

Sz
wy sin u cos fh

wy cos2 fh 1 wz sin2 fh
(15.b)

z) plane of coordinates, (15), (16), and (17) yield the TE
results of [1].

—s*y1 5 s*y2 and s*z1 5 s*z2 . The transverse magneticG 5!wywz sin2 u1wzwx cos2 u sin2 fh1wxwy cos2 u cos2 fh

wy cos2 fh 1 wz sin2 fh
.

conductivities of the two media are equal. This case is a
(16) true 3D case. Using (15), both Equations (17) become

At an interface between two media, the ratio of the trans- Ï«1e1 Sy1Sz1 sin u1

wy1 cos2fh1 1 wz1 sin2fh1

1
G1

(19)
mitted wave to the incident wave must be invariable when
moving in the interface. As a result, the same demonstra-
tion as that in [1] yields the Snell–Descartes law connecting

5
Ï«2e2 Sy2Sz2 sin u2

wy2 cos2 fh1 1 wz2 sin2 fh1

1
G2

.
the b1 and c1 coefficients of the incident wave to the b2

and c2 coefficients of the transmitted wave:

For the reflected wave, a similar demonstration yields
b1 5 b2 , c1 5 c2 . (17) the corresponding angle u equal to f 2 u1 . Let us now

consider the incident, reflected, and transmitted fields
Ei , Er , Et , Hi , Hr , Ht . Continuity of the components inUsing (15) in both media, the ratio of these two equa-

tions gives the interface gives
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Ei cos u1 2 Er cos u1 5 Et cos u2 (20.a)
rp 5

Ïwx1 2 Ïwx2

Ïwx1 1 Ïwx2

. (26)
Hi 1 Hr 5 Ht (20.b)

Transverse Magnetic Case TMThese equations are identical to those of the 2D case and
yield the same reflection coefficient rp :

The electric field lies in a plane parallel to the interface.
We have ue 5 0, fh 5 fe 1 f/2, and uh 5 u. From (9),
(10), and (12),rp 5

Z2 cos u2 2 Z1 cos u1

Z2 cos u2 1 Z1 cos u1
. (21)

b 5 2Ï«eGSy
sin u sin fe

wz cos2 fe 1 wy sin2 fe
(27.a)We now consider two media having the same transverse

conductivities, the same permittivity, and the same perme-
ability, so that sy , s*y , sz , s*z , «, e of the two media are

c 5 Ï«eGSz
sin u cos fe

wz cos2 fe 1 wy sin2 fe
(27.b)equal. From (19) we have

G 5 ! wzwx cos2 fe 1 wxwy sin2 fe

wx sin2 u 1 wy cos2 u sin2 fe 1 wz cos2 u cos2 fe
. (28)sin u1

G1
5

sinu2

G2
. (22)

From (27) and (17) which is valid for any polarization,If, moreover, the two media are matched ones, that is (sx ,
s*x ), (sy , s*y ), and (sz , s*z ), satisfying the condition
s/« 5 s*/e in each medium, we have G1 5 G2 5 1, so Sy1

Sz1
tan fe1 5

Sy2

Sz2
tan fe2 . (29)that u1 5 u2 from (22) and Z1 5 Z2 from (9). As a result,

(21) becomes

We have sin fe1 5 sin fe2 and cos fe1 5 cos fe2 in therp 5 0. (23)
following cases:

The TE component is not reflected from an interface —sy1 5 sz1 and sy2 5 sz2 . If, moreover, s*y1 5 s*z1 and
normal to x lying between two matched media having the s*y2 5 s*z2 this case yields the 2D TM case briefly described
same sy , s*y , sz , s*z conductivities. This result generalizes in [1].
the 2D case [1]. If « and e of the matched media are —sy1 5 sy2 and sz1 5 sz2 . This is a true 3D case. Using
not equal, rewriting (22) from (19) shows that rp is as an (27), Eqs. (17) become
interface lying between the usual («1 , e1) and («2 , e2)
media, provided sy2/sy1 5 sz2/sz1 5 «2/«1 .

In the case of unmatched media having the same sy , Ï«1e1 G1 sin u1

wz1 cos2 fe1 1 wy1 sin2 fe1
5

Ï«2e2 G2 sin u2

wz2 cos2 fe1 1 wy2 sin2 fe1
.s*y , sz , s*z , a simple formula can be obtained for the

reflection coefficient, as in [1]. Using (9) and (22) the re-
(30)flection coefficient (21) becomes

As in the TE case, continuity of the components lying in
rp 5

sin u1 cos u2 2 sin u2 cos u1

sin u1 cos u2 1 sin u2 cos u1
. (24)

the interface yields the usual rs reflection coefficient,

Squaring (22), replacing G1 and G2 by their values from
rs 5

Z2 cos u1 2 Z1 cos u2

Z2 cos u1 1 Z1 cos u2
. (31)(16), we obtain

Ïwx2 sin u1 cos u2 5 Ïwx1 sin u2 cos u1 . (25)
If the media have the same transverse conductivities sy ,
s*y , sz , s*z , the same permittivity «, and the same perme-

Formulas (24) and (25) are identical to those of the 2D ability e, (30) becomes
case [1], and so they yield the same reflection coefficient
for two unmatched media having the same transverse con-
ductivities sy , s*y , sz , s*z : G1 sin u1 5 G2 sin u2 . (32)



368 JEAN-PIERRE BERENGER

If, moreover, the two media are matched ones, G1 5 G2 5 waves from vacuum–layer interfaces. As in [1], only propa-
gating waves were considered above, nevertheless such1, u1 5 u2 , Z1 5 Z2 , so that
an absence of reflection from interfaces is also true with
evanescent waves (see the Conclusion).rs 5 0. (33)

As a final remark, in the definition of the PML medium
(1), electric and magnetic fields are symmetrical. TheThe TM components are not reflected from an interface
result is that a dual formulation can be derived fromnormal to the x axis lying between two matched media
(5). In dual formulas, with G changed to 1/G in itshaving the same transverse conductivities sy , s*y , sz ,
definition (9), the sign of (12) is changed and we , wh ,s*z .
S, w are replaced by wh , we , S*, 1/w in (10) and (12).In the case of two unmatched media of the same trans-
The TE and TM cases are interchanged, the duals ofverse conductivities, it can be shown that (26) also holds
(15) and (16) being (27) and (28) with fe , w, replacedfor the TM coefficient rs . Using (9) and(32) one can obtain
by fh , 1/w and an opposite sign in (27), and vice versars equal to the opposite sign of (24). Squaring (32) yields
for the duals of (27) and (28).(25) with wx1 and wx2 interchanged. The modified equa-

tions (24) and (25) give then rs equal to the rp coeffi-

2.4. Perfectly Matched Layer for the Finite
cient (26).

Summary and Conclusions
Difference Technique

The 3D PML technique is a straightforward generaliza-
Any plane wave can be split into TE and TM polariza- tion of the 2D one presented in [1]. The Maxwell equations

tions. Thus, for any propagating plane wave we have the are solved by the FDTD method [2, 3] within a computa-
following theoretical properties at an interface normal to tional domain surrounded by an absorbing layer which is
x lying between PML media of same « and e: an aggregate of PML media whose properties have been

predicted in previous sections.—if the transverse conductivities sy , s*y , sz , s*z are
In the six sides of the domain, the absorbing media areequal, the reflection is given by (26).

matched PML media of transverse conductivities equal to—if, moreover, all couples of conductivities satisfy the
zero, for instance, (0, 0, 0, 0, sz , s*z ) media in the uppermatching impedance condition in both media, there is no
and lower sides of the domain (Fig. 3). As a result, outgoingreflection at any angle of incidence and any frequency.
waves from the inner vacuum can penetrate without reflec-
tion into these absorbing layers.Obviously these properties are also valid at interfaces nor-

mal to y and normal to z, the transverse conductivities In the 12 edges, the conductivities are selected in such
a way that the transverse conductivities are equal at thebeing respectively sz , s*z , sx , s*x and sx , s*x , sy , s*y .

An important case occurs when one medium is a vacuum, interfaces located between edge media and side media.
This is obtained by means of two conductivities equalor a medium of real « and e. Since a vacuum can be

regarded as a (0, 0, 0, 0, 0, 0) PML medium, there is to zero and the other four equal to the conductivities
of the adjacent side media, as shown in Fig. 3. Asno reflection from an interface located between a vacuum

and a PML medium whose transverse conductivities equal a result, there is theoretically no reflection from the
side–edge interfaces.zero and whose longitudinal conductivities satisfy the

matching condition. For instance, the reflection equals In the eight corners of the domain, the conductivities
are chosen equal to those of the adjacent edges, so thatzero from an interface normal to y located between a

vacuum and a (0, 0, sy , s*y , 0, 0) medium, provided sy/ the transverse conductivities are equal at the interfaces
between edge layers and corner layers. So, the reflection«0 5 s*y /e0 . Such a special case will be used in the

PML technique to ensure zero reflection from the vac- equals zero from all the edge–corner interfaces.
Thus, as in the 2D cases [1], in the 3D case an absorbinguum–layer interfaces. Actually, as remarked before, this

case is 2D and the demonstration in [1] ensures zero layer can be built in such a way that there is no theoretical
reflection from any of the interfaces in the computa-reflection. In the implementation of the PML technique,

the 3D theory will only be called for the small interfaces tional domain.
Numerical implementation of the PML layer in a 3Dlocated inside the PML layer near the edges and the

corners (see the next section). FDTD domain is also a straightforward generalization of
the 2D case [1]. In the inner vacuum, the finite-differenceIn conclusion, the properties of the 2D PML medium

[1] are preserved in the 3D case. This will allow an ab- equations are the usual [2, 3] discretizations of the Maxwell
equations. In the PML layer, there are 12 subcomponentssorbing layer to be built on the outer boundary of a compu-

tational domain, without theoretical reflection of plane to be computed in place of the six components. The Yee
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FIG. 3. Upper-right part of a computational domain surrounded by the PML layer.

FDTD grid is unchanged, the only change is that two sub- uum–layer interfaces, as Eyx and Ezx in the interfaces nor-
mal to x, the numerical derivatives involve one point incomponents are computed at each point of the grid, Exy

and Exz at Ex points, . . ., Hzx and Hzy at Hz points. Discreti- the vacuum and the other in the PML layer. Such deriva-
tives are obtained by using the component in the vacuumzation of (1) is obvious, as in 2D. For instance, with the

usual notations of the FDTD scheme, Exy is computed by and the sum of the two subcomponents in the layer, as
detailed for the 2D case in [1].the equation derived from (1.a),

Continuity of tangential components at vacuum-layer
interfaces is ensured as with the Maxwell equations, byEn11

xy (i 1 As, j, k)
the normal derivatives computed using one point in the

5 e2sy(i11/2, j,k)Dt/«En
xy(i 1 As, j, k) vacuum and one point in the layer. Such a continuity in the

numerical implementation is consistent with the theoretical
continuity enforced in (20), and then with the reflection1

1 2 e2sy(i11/2, j,k)Dt/«

sy(i 1 As, j, k)Dy coefficients (23) and (33).
The theoretical properties of the PML layers were dem-

3 [Hn11/2
zx (i 1 As, j 1 As, k) (34)

onstrated above for continuous media. From this ideal
point of view, there is no reflection from all the interfaces1 Hn11/2

zy (i 1 As, j 1 As, k)
in the computational domain. Unfortunately, that is not

2 Hn11/2
zx (i 1 As, j 2 As, k) the case in the FDTD implementation of the PML tech-

nique. Due to the discretization of the PML equations, a
2 Hn11/2

zy (i 1 As, j 2 As, k)], certain amount of numerical reflection occurs from sharp
variations of conductivities at the interfaces. As in the 2D
case [1], in order to reduce this reflection the conductivitieswhere sy depends on the location in the layer. With inter-

faces normal to y located at index JL1 and JL2 as in Fig. 3, sx , sy , sz increase from a small value in the vacuum–layer
interfaces to a great value on the outer boundaries. Thissy 5 sy1 if J # JL1 , sy 5 0 if JL1 , J , JL2 , and sy 5 sy2

if J $ JL2 . means that the conductivity in side layers depends on the
distance from the interface, i.e., on one mesh index. ForFor computing the tangential subcomponents in the vac-
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example, sy1 and sy2 to be used in (34) depends on J. In as in the 2D case [1]. So, for a wave crossing the layer
and reflected by the perfectly conducting conditions setedge and corner layers, the variation of the conductivity

is set equal to that in the adjacent side layer, with the on its outer boundary, the apparent reflection is equal
to that of the 2D layer. This is in agreement with theconsequence that the conductivities in the PML layer de-

pend only on one mesh index, sx 5 sx(i), sy 5 sy( j), and fact that the side layers are 2D layers, as remarked
above. From [1], for a layer of thickness d and longitudinalsz 5 sz(k). As an illustration, at any point located on the

right of the plane J 5 JL2 in Fig. 3, we have sy2 (i 1 As, j, conductivity s(r), depending on the distance r from the
interface, the apparent reflection is, as a function of thek) 5 sy2( j).

From a theoretical point of view, an implementation of angle of incidence u:
variable conductivities does not modify the properties of
the absorbing layer since a layer with increasing conductiv- R(u) 5 [R(0)]cos u (35)
ity can be regarded as a juxtaposition of one-cell thick
layers separated by internal interfaces. In side layers, only R(0) 5 exp F2

2
«0c

Ed

0
s(r) drG . (36)

the longitudinal conductivity vary from one one-cell layer
to the next, the transverse conductivities are unchanged
(equal to zero). So, there is no reflection from internal In this paper, some numerical tests will be shown for vari-
interfaces between two adjacent one-cell layers. Similarly, ous profiles of conductivity, parabolic conductivities as in
with the implementation described above, there is no re- [1], or conductivities increasing geometrically as in [4], this
flection from internal interfaces located inside edge and last profile being an optimum one to reduce the numerical
corner layers; in all cases the transverse conductivities do reflection in wave–structure interaction problems. Details
not vary through these interfaces. Considering, for in- on the exact implementation of the conductivity at the
stance, an internal interface normal to z inside a corner mesh points can be found in [1, 4].
layer, sz vary through this interface, but the transverse
conductivities sx and sy are identical on both sides of it, 3. NUMERICAL EXPERIMENTS
since they do not depend on z.

In all the media of Fig. 3, theoretically there are 12 Although based on the use of an absorbing layer de-
subcomponents. In practice, the number of quantities to signed to remove reflection from the vacuum–layer inter-
be computed is less. In side layers, since the transverse faces, the PML technique is not a perfect method of free-
conductivities are equal, there are only 10 quantities to be space simulation for two reasons. First, the theoretical re-
computed, four subcomponents merging into two usual flection of a plane wave is not equal to zero, due to the
components. Considering, for example, the right-side layer need of a truncation condition on the outer boundary of
of Fig. 3, since sx 5 sz 5 0 and only Eyz 1 Eyx is required
in (1.h) and (1.k), Eqs. (1.c) and (1.d) merge so that the
usual Ey component can replace Eyz and Eyx . Similarly,
due to s*x 5 s*z , (1.i) and (1.j) merge, so that Hy can replace
Hyz and Hyx . In the edge layers, four subcomponents could
also merge into two components, if some conductivities
were equal, for example, if sy2 5 sz2 and s*y2 5 s*z2 in the
x-directed edge of Fig. 3. In practice, the conductivity varies
in the layer and such conditions are not satisfied. Similarly,
in the corner layers, if all the electric and magnetic conduc-
tivities are equal, the medium becomes the classical
matched medium involving the six usual components. In
practice, due to the variations of the conductivities the 12
subcomponents must be computed separately. In conclu-
sion, in side layers there are only 10 quantities to be com-
puted, and elsewhere 12 quantities. Since most of the PML
cells are in side layers, the memory requirements of one
PML cell can be roughly estimated to about Gd that of one
cell of vacuum.

In the absorbing layers, the magnitude of a plane wave
is ruled by the three absorbing terms of (13). In side
layers, two absorbing terms equal unity, so that the FIG. 4. One or two dipoles radiating in free space. Locations of point

Q, line A, line B.magnitude is governed by only one exponential term,
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FIG. 5. One dipole located at the center of a 24 p 24 p 24-cell computational domain surrounded by various absorbing boundary conditions.
Upper part shows the electric field at point Q. Lower part shows the L2 error on the 20 p 20 p 20-cell grid surrounding the dipole. The last result
in lower part has been computed within a 48 p 48 p 48-cell domain surrounded by the second-order operator.

the layer. With a perfect conductor as truncation condition, pared to the results obtained by other methods of free-
space simulation, the matched layer [5, 6] and the first twothe reflection coefficient is given by (35) which equals one

at grazing incidence. Second, the discretization of the PML orders of the Higdon operator given in [1]. This operator
is a special case of the general operator described in [7].equations results in the presence of numerical dispersion

and numerical reflection from the vacuum–layer inter- Its first order is equivalent to the first order of the one-
way approximation of the wave equation [8].faces. Thus, as in [1] some numerical experiments are pre-

sented here in order to evaluate the actual possibilities of
the PML technique in practical computations. Most tests

3.1. Radiating Dipoles
of [1] cannot be performed in 3D since their costs would
be prohibitive, especially the tests involving a plane wave. We have first considered a computational domain of 24

by 24 by 24 cells of vacuum, surrounded by either a PMLWe show two tests. The first is related to the absorption
of the field radiated by either one or two dipoles. The layer or an absorbing operator. The sizes of the cell were

5 by 5 by 5 cm and the time step was 83.333 ps. A verticalsecond is a wave–structure interaction problem. For both,
the results computed using the PML technique are com- dipole was located near the center of the domain, at Ez
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FIG. 6. One dipole located two cells from the corner of a 14 p 14 p 14-cell computational domain. The electric field at point Q is shown in the
time domain (upper part) and in the frequency domain (lower part).

point (12, 12, 12 1 As). The electric dipole Pe was imple- Beside the computations performed using the boundary
conditions to be tested, we computed a reference solutionmented by the FDTD equation
within a domain of 150 by 150 by 150 cells, allowing a
boundary-free solution for more than 250 time steps in itsEn11

z 5 En
z 1

Dt
«0

[curl H]n11/2 2
Dt

«0Dx3

dPe(tn11/2)
dt

, (37)
center part.

Two kinds of results are reported in Fig. 5. The upper
where Dx is the spatial increment. The results in this paper part shows the vertical field Ez at point Q(12, 22, 12 1 As),
were computed using the gaussian pulse, located 10 cells from the dipole (Fig. 4) and two cells

from the absorbing boundary of the 24 p 24 p 24 domain.
The results computed using the two operators and threePe(t) 5 10210 exp S2St 2 3T

T D2D (T 5 2 ns). (38)
PML layers are compared to the reference solution and
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FIG. 7. One dipole located two cells from the corner of a 14 p 14 p 14-cell computational domain. The electric field is shown along lines A and
B, at frequency 10 MHz.

to the analytical solution of the problem. The PML counterpart in the reference domain, the quantity reported
in Fig. 5 islayers are denoted as in [1], for example, a PML(8-P-

0.01) layer is a layer of eight cells, a parabolic profile
of conductivity, and a normal reflection R(0) equal to

L2 5 O22

i52
O22

j52
O2111/2

k5211/2
[Ez(i, j, k) 2 Ezr(i, j, k)]2. (39)0.01%. As it appears in Fig. 5, the operator method cannot

allow an exact solution to be computed. Conversely, using
the PML method the results are in very good agreement
with the analytical solution and are superimposed on Figure 5 shows five results computed within the 24 p 24 p

24-cell domain, plus an additional result computed withthe boundary-free reference.
The lower part of Fig. 5 gives the L2 norm of the error the dipole at the center of a domain of 48 p 48 p 48 cells

surrounded by the second-order operator. These resultson the 20 p 20 p 20 grid surrounding the dipole. Denoting
as Ez(i, j, k) the field in the test domain and Ezr(i, j, k) its show that the absorption of the field radiated by the dipole
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is widely improved by using the PML method. Comparing technique the results are worse than those of Fig. 5. An-
other result was computed using a 4-cell thick matchedto the operator method, the 8-cell and 12-cell PML layers

allow the peak of the error to be reduced by more than layer ML(4-P-1), with a parabolic profile of conductivity
and a normal reflection of 1%. This result is also in error.107. Such a reduction could not be achieved by increasing

the computational domain surrounded by an operator, as Conversely, by using PML layers the results are very good,
at least for the 22 ns shown in Fig. 6. In the three PMLshown by the case of the 48 p 48 p 48-cell domain whose

computational cost was greater than that of the 8-cell PML layers, the conductivity increases as a geometric progres-
sion. As a function of the distance from the interface, it iscase. The results in Fig. 5 are in agreement with those

observed in the 2D case [1]. given by
The results in Figs. 6 and 7 were computed within a

vacuum reduced to 14 p 14 p 14 cells, with the dipole
located only two cells from a corner, at point (2, 2, 2 1 As). s(r) 5 2

«0c
2 Dx

ln g
gN 2 1

ln R(0) gr/Dx, (40)
The upper part of Fig. 6 shows the field observed at point
Q of Fig. 4, located at (2, 12, 2 1 As) in the reduced grid.
Due to the reduction of the domain, with the operator where g is the ratio of the geometric progression, Dx is

FIG. 8. Two dipoles located near a corner of a 16 p 14 p 14-cell computational domain. Upper part shows the electric field at point Q in the
frequency domain. Lower part shows the electric field along line A, at frequency 10 MHz.
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the spatial increment, and N is the number of cells in the approximately of opposite signs. With Pe from (38), the
dipoles werelayer. Such layers are denoted as PML(N-Gg-R(0)).

The lower part of Fig. 6 shows the field at point Q in
the frequency domain. To obtain this result we computed Pe1(t) 5 Pe(t), Pe2(t) 5 2Pe(t 1 dt), (42)
the field up to 5000 ns and then performed a Fourier trans-
form. Only the first-order operator is shown in this figure,

where dt is an interval of time. If dt 5 0, then Ez 5 0
the second-order one has been found unstable after thou-

in the plane of antisymmetry (I 5 4). By an adequate
sands of time steps. Two results related to the matched

choice of dt, Ez may be small in this plane, at frequencies
layer method are shown, the first one computed with the

of interest. The results in Fig. 8 were computed with
above 4-cell ML layer and the second one with a thicker

dt 5 0.01 ns. The upper part gives the field at point Q
12-cell ML layer. The Fourier transform of the reference

(4, 12, 2 1 As) and the lower part gives the field along
has been computed using a 22-ns boundary-free result

line A, at 10 MHz. We observe that the results are far
and supposing that the field equals zero later than 22

from the reference when using the operator or ML
ns. As expected, the results computed by the operator

techniques. With the 8-cell and 12-cell PML layers, the
and ML techniques differ from the reference at any

results at point Q are correct above frequencies of 50
frequency. Results from the 4-cell and 12-cell ML layers

MHz and 5 MHz. With the 12-cell layer the 50 dB range
are not quite different. This is due to the fact that the

of Ez along line A is correctly computed at 10 MHz.
reflection is mainly determined by the physical reflection

Such a test illustrates the very good absorption of the
from the vacuum-ML interface [1, 6]. With PML layers,

radiated field by PML layers whose normal reflections
the results are widely improved. They are superimposed

R(0) were equal to 0.01%.
on the reference above a frequency which decreases as

In conclusion to these experiments with radiating di-
the thickness of the layer increases, about 100 MHz with

poles, reflection from the outer boundary can be widely
the 4-cell layer and 5 MHz with the 8-cell layer. Such

reduced by using a PML layer in place of the matched
results can be explained by following the way of [4]. In

layer [5, 6] or the one-way operator [7]. Such an achieve-
wave–structure interaction problems, it has been found

ment reduces the numerical noise in the FDTD computa-
that the domain of validity of the PML technique is

tional domain, resulting in a substantial increase of the
bounded by a frequency fc which depends on the numeri-

dynamic range of the computed results. The computational
cal conductivity implemented in the first row of the layer,

requirements of PML layers are greater than those of the
denoted as sn(0). From [4],

other methods, due to their thickness and the 10 or 12
subcomponents per cell. But this does not mean that the
PML method is less efficient, since such layers allow far

fc 5
sn(0)
2f«0

5
c

4f Dx
1 2 Ïg
gN 2 1

ln R(0). (41) better results to be computed within a given computational
domain. When comparable accuracies are considered, the
other boundary conditions require far greater domains, so

The fc frequencies of the three layers of Fig. 6 are respec-
that the PML method is more efficient in terms of overall

tively equal to 50.3, 2.25, and 0.105 MHz. Such frequencies
computational requirements. This is illustrated by the 48 p

are in accordance with the results in Fig. 6. Thus, Fig.
48 p 48-cell-domain calculation in Fig. 5 whose memory

6 suggests that the analysis of [4] is also valid for radiating
and time requirements were about 2.5 times greater than

antenna problems. One might think that specifications
those of the 24 p 24 p 24-cell domain surrounded by the

of an optimized PML layer could be determined for
4-cell PML layer.

antenna problems, as has been done for interaction
problems in [4].

Figure 7 shows the magnitude of the Ez component along
lines A and B (Fig. 4) located two cells from the absorbing
boundary conditions, at frequency 10 MHz. As the opera-
tor and ML techniques, the 4-cell PML layer does not
allow correct results to be computed since 10 MHz is far
below frequency fc . Conversely, with the 8-cell PML layer
the results are close to the reference and with the 12-cell
one they are exact.

The results in Fig. 8 were computed within a 16 p 14 p

14-cell domain with a couple of dipoles (Fig. 4) separated
by four cells (20 cm), located near a corner, at points

FIG. 9. The 100 p 20-cell plate and the incident wave.(2, 2, 2 1 As) and (6, 2, 2 1 As). The radiated fields were
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FIG. 10. Wave–structure interaction problem. Electric field at the corner of a 100 p 20-cell plate computed using a matched layer or an operator
positioned 50 cells from the plate (upper part), or a parabolic PML layer positioned only two cells from the plate (lower part).

3.2. Wave–Structure Interaction aries were 50 cells from the scatterer. The results computed
with the 4-cell and 12-cell ML layers are about identical

We have considered the scattering problem of Fig. 9.
and very close to the result obtained by means of the

The scatterer was a plate of 100 by 20 cells and zero thick-
second-order operator. All the results are only approxi-

ness. The size of the cubic cell was 5 cm and the incident
mate solutions. To obtain better results a larger domain

plane wave propagating downward was
would be required with scatterer-boundary separation at
least equal to the size of the scatterer. The lower part of

E(t) 5 Einc(e2t/100 2 e2t) (t in nanoseconds) (43) the figure shows the results computed using PML layers
set only two cells from the plate, which was then within a
104 p 24 p 4-cell vacuum. The layers are the same as thoseThis problem is close to the 2D test presented in [1]. Figure

10 shows the vertical field at the corner of the plate (Fig. of [1], with parabolic profiles of conductivity and 4, 7, 10,
and 15 cells. The results are like those of the 2D case.9). In the upper part, results computed using the matched

layer and operator methods are compared to a boundary- Using the 10-cell layer the solution is very close to the
reference for the 300 ns in Fig. 10; using the 15-cell layerfree reference solution. The plate was within a 200 p 120 p

100-cell domain of vacuum, so that the absorbing bound- the result is superimposed on the reference. Thus, as the 2D
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FIG. 11. Wave–structure interaction problem. Electric field at the corner of a 100 p 20-cell plate computed using geometrical PML layers. Upper
part illustrates the effect of varying the ratio of the geometric progression. Lower part illustrates the effect of varying the number of cells in the layer.

PML layer, the 3D one allows a very accurate simulation of Figure 11 illustrates the consequences of varying the
parameters g and N. In this test, the incident wave wasfree space using only a very small vacuum around the
a unit step (the first exponential of (43) replaced byscattering structure.
one). The upper part shows some results computed usingA detailed analysis of wave–structure interaction prob-
15-cell layers of various g (in each case (44) is satisfied).lems is reported in [4] for 2D problems. It has been
The results are in agreement with [4]. By reducing gfound that the optimum profile of conductivity is the
the solution tends towards the reference, g equal to 2.15geometric progression (40), with R(0) on the order of
ensures a correct solution, as with the 2D 100-cell plate1%, g evaluated as a function of the number of cells in
in [4]. The second part of Fig. 11 shows some resultsthe scatterer length, and N set in such a way that the
obtained using PML layers of various N and, then,following time, tc , is at least 10 times the duration of
various sn(0) in the first row of the PML mesh. Thethe computation Dc :
corresponding tc are reported in the figure. With the 4-
cell and 7-cell layers the solution departs from the
reference before the respective tc times, as expected.tc 5

1
fc

$ 10 Dc (44)
With the 10-cell layer, (44) is roughly satisfied (Dc 5
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300 ns), the solution is correct for the whole time reported problems, as shown in this paper and in [1, 4, 9]. Second,
an increase of accuracy and dynamic range inside the com-in the figure. Thus, the results in Fig. 11 show that the

conclusions of the analysis [4] are also valid with the putational domain. This last improvement may be very
large, too, in radiation problems as those shown in this3D PML layer. Parameters g and N defining the layer

can be specified as functions of the number of cells in paper and in [1, 10, 11], or in other applications as that
in [12].the scatterer and the duration of the computation, as in

the 2D case. Starting from the material in [1], a lot of work has
been done by others about the PML method, resultingThe results in Figs. 10 and 11 also show that the PML

method allows the computational requirements to be in various formulations and modifications of the above
PML media. These investigations also provide somewidely reduced. In each computation, estimates of the

memory requirement and computational time can be interpretations of the PML concept or extend its possibili-
ties. Here we mention those we are aware of. In [13],obtained from the number of unknowns. Taking into

account that in PML cells there are 10 subcomponents the PML media are described in terms of stretched
coordinates. In [14, 15], discussions about the physicalper cell in side layers and 12 in edge and corner layers,

with the 10-cell PML the overall number of unknowns meaning of PML media can be found, along with attempts
to reduce the PML equations to the Maxwell equations.was about 1,400,000 instead of more than 14,400,000

with the operator or ML layer located 50 cells from It is shown that in side media of a computational domain,
in which transverse conductivities equal zero, the PMLthe plate. That yields an estimate of the ratio of the

computational requirements greater than 10. In accor- equations are equivalent to the Maxwell equations with
an additional active current density. In [16], the PMLdance with such prediction, for the 10-cell-PML and

operator calculations, in our computer the ratio of compu- method is extended to curvilinear coordinates. In [17, 18],
evanescent waves are addressed. In theory, such wavestational times was equal to 10.4. Thus, solving the problem

in Fig. 10 with the PML method, memory requirement are not reflected from vacuum–PML interfaces. Finally,
in [19] the PML layer is extended to lossy media, andand computational time were more than 10 times shorter.

Moreover, the accuracy was better. If the scatterer- in [20] a formulation suitable to the finite-element method
is presented.boundary separation were equal to 100 cells, in order

to improve the solutions of the operator or ML methods, In conclusion, the PML technique is a very efficient
method of free-space simulation, as shown here and inthe gain would be greater, on the order of a factor

of 50. Thus, very large reductions of computational other papers referenced above. Nevertheless, due to the
numerical reflection, its implementation in the FDTDrequirements can be expected from using the PML

method in wave–structure interaction problems. A more method is not perfect. For wave–structure interaction
problems as those encountered in electromagnetic compat-detailed discussion related to two realistic scatterers can

be found in [9]. ibility, this reflection is analyzed in [4], allowing an opti-
mized layer to be specified. But we think that this work
is only a first step toward controlling and reducing the4. CONCLUSION
numerical reflection. Other research should be done in
the future, in order to improve and optimize the FDTDIn this paper, the absorbing PML medium [1] has been

described in the three-dimensional case. We have shown implementation of the PML method.
that all the theoretical properties of the 2D medium [1]
are also valid in the 3D case, especially the possibility
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absorbing reflectionless layer can be built on the outer

2. K. S. Yee, IEEE Trans. Antenna. Propag. 14, 302 (1966).
boundaries of a 3D computational domain, as in the 2D

3. A. Taflove, Wave Motion 10, 547 (1988).case.
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